生物固氮(内含英文谨慎观看)
生物固氮研究历史
1862年发现生物固氮现象
三个阶段:
1细胞水平研究阶段(1862-1960)
1888: beijerik 第一个分离到根瘤菌
1920’s: 固氮菌用于农业
1942: 鲍利斯利用14n示踪法证明nh3是固氮产物
2无细胞水平研究阶段(1960-1966)
1960:carnaham 将pyr加到巴氏梭菌无细胞系:n → nh3
1962: mortenson发现固氮需铁氧还蛋白是电子载体
1964:哈迪证明固氮需atp
1966:diworth和schollhorn发现c2h2可作为固氮酶的底物
3分子水平研究阶段(1966-present)
布伦等分离到钼铁/钼蛋白(1966)
固氮酶纯化
固氮基因的表达调控
固氮基因工程
生物模拟固氮
生物固氮作用及固氮生物类型
(一)生物固氮概念:是指固氮微生物将大气
中的氮还原成氨的过程
(二)固氮微生物的种类
豆科植物(如花生、大豆)的根瘤菌
共生固氮微生物
非豆科植物(如杨梅属)的根瘤菌
厌氧的巴氏梭菌、需氧固氮杆菌、光合细
自生固氮微生物 菌、兼性厌氧的克氏杆菌、厌氧和光合自
养的蓝藻、需氧和光合自养的细菌
共生固氮微生物
1概念:是指与一些绿色植物
互利共生的固氮微生物
2代表生物:根瘤菌(属于细菌)
共生特性:不同的根瘤菌,各自只能侵入一种
或多种特定种类的豆科植物
共生关系:豆科植物为根瘤菌提供有机物,根
瘤菌为豆科植物提供氨
自生固氮微生物
1概念:是指在土壤中能够独立
进行固氮的微生物
2代表生物:
圆褐固氮菌(属于细菌):具有较强的
固氮能力,并且能够分泌生长素,促进
植物生长。制成菌剂,施用到土壤中,
可以提高农作物的产量。
固氮酶的结构与功能
1固氮酶的特点:
固氮酶由两个蛋白组分构成
(mw:240 kd)
(mw:60 kd)
钼铁蛋白(组分i)α2β2、 mo、fe,α亚基含mofe7s9原子簇和
异柠檬酸(femoco):络合还原n2 → nh3。
αβ间的fe8s7原子簇:将电子传给 femoco,
用于n2→nh3并放氢
铁蛋白(组分ii) γ2、fe ,含fe4s4原子簇:传递电子给fe8s7,e-/2atp
固氮酶的活性调节
氧防护体统
氨同化调节
1)氧防护体统
蓝藻保护固n酶机制
异形胞
i、厚壁,物理屏障 ii
、缺乏氧光合系统ii
根瘤菌保护固n酶机制
类菌体
i、 周膜
ii、 根瘤菌内皮层排列紧密
iii、豆血红蛋白,可与氧可逆结合(高时结合,低时释放)
氨同化调节
氨是生物固氮反应的初产物,对固氮酶有
抑制作用——称铵抑制效应,是可逆的。
固氮的基因表达调控
1)自生固氮
克氏杆菌的固氮基因研究的较深入。
固氮基因群:
固氮酶结构基因:nif hdk外
nife、n、b、q:与femoco的加工或装配有关
nifs、u:参与钼铁蛋白的加工和装配
nifm:参与铁蛋白的加工成熟 niff、
j:与固氮酶系的电子传递有关 nifla
:调控基因。
共生固氮
根瘤菌基因
根瘤菌的结瘤基因nod a,b,c 是细胞分裂和宿主根毛弯
曲所必需的,核苷酸序列较保守。nod ef,nod g,nod h或
nod lmn参与宿主的选择,与根毛弯曲的位置,细胞分裂的
效率和持久性有关。
固氮基因分为nif基因和fix基因两群,前者与克氏杆菌
的固氮基因相似,后者的功能有待进一步研究。
豆科植物基因
豆科植物的早期结瘤素基因与根瘤的早期形成有关,
晚期结瘤素基因表达多种酶和一些功能不清的结瘤素。
生物固氮的基因工程
1使非豆科植物转变为固氮作物
(1)将豆科植物的结瘤基因导入其它作物,使其
能够感染固氮菌
(2)改变根瘤菌的遗传结构,使其能够感染其它作物
(3)将固氮基因导入非豆科植物。
由于固氮酶复合体对氧的抑制作用十分敏感,消耗大量的atp,这一领域还有不少问题要研究解决。
2 提高现有固氮作物的固氮能力
(1)将固氮效率高的根瘤菌固氮基因族导
入 结瘤能力强的根瘤菌中。
(2)将外源共生基因导入根瘤菌中,提高
其 结瘤能力或固氮能力。
(3)培育抗药的根瘤菌。
abzymes - catalytic antibodies
antibodies are immunoglobulins elicited in an organism in response to immunological challenge by a foreign molecule called antigens;
antibodies elicited in response to transition state analogs have the ability to stabilize the transition state and thus can catalyze a reaction by forcing the substrate into the transition state structure;
how do enzymes stabilize the transition state of a reaction?
catalysis by proximity and orientation
general acid-base catalysis
electrostatic catalysis
metal catalysis
covalent catalysis
substrate strain
catalysis by proximity and orientation
this increases the rate of the reaction as enzyme-substrate interactions align reactive chemical groups and hold them close together this reduces the entropy of the reactants and thus makes reactions such as ligations or addition reactions more favorable, there is a reduction in the overall loss of entropy when two reactants bee a single product
this effect is analogous to an effective increase in concentration of the reagents the binding of the reagents to the enzyme gives the reaction intramolecular character, which gives a massive rate increase
general acid-base catalysis
general acid catalysis is a process in which proton transfer from an acid lowers the free energy of a reaction’s transition state
a reaction may also be stimulated by general base catalysis if its rate is increased by proton abstraction by a base
some reactions may be simultaneously subject to both processes; these are concerted acid–base catalyzed reactions
electrostatic catalysis
enzymes use charged amino acids to neutralize charges that develop during formation of the transition state of a reaction this is known as electrostatic catalysis
metal catalysis
metals can act as lewis acids
metals can stabilize charges that develop in the transition state
metals can accept and donate electrons in oxidation-reduction reactions
metals can be important for the structure of the enzyme
substrate strain
this is the principal effect of induced fit binding this induces structural rearrangements which strain substrate bonds into a position closer to the conformation of the transition state, so lowering the activation energy and helping catalyze the reaction in addition to bond strain in the substrate, bond strain may also be induced within the enzyme itself to activate residues in the active site
covalent catalysis
covalent catalysis accelerates reaction rates through the transient formation of a catalyst–substrate covalent bond
usually, this covalent bond is formed by the reaction of a nucleophilic group on the catalyst with an electrophilic group on the substrate, and hence this form of catalysis is often also called nucleophilic catalysis
in addition, several coenzymes, notably thiamine pyrophosphate and pyridoxal phosphate, function in association with their apoenzymes as covalent catalysts